1) a) $\frac{13}{120}$
b) $\frac{u x z}{v y}$
c) $\frac{23}{36} r s$
2) a) Divide both sides by 1000
b) 83.810205
c) 67890
d) 0.001
e) 1
3) a) $a^{2}-b^{2}$
b) i) $(a+b)(a-b)$
ii) $(a b+c d)(a b-c d)$
c) i) Second equation:
$(2 x+y)(2 x-y)=31$
$31(2 x-y)=31$
$2 x-y=1$ (equation 1 )
ii) $2 x+y=31$ (equation 2 )

Equation 2 - equation 1 gives $2 y=30$ so $y=15$ and $x=8$
d) $9 x^{2}-16 y^{2}=176$
$(3 x+4 y)(3 x-4 y)=176$
$44(3 x-4 y)=176$
$3 x-4 y=4$ (equation 3 )
$3 x+4 y=44$ from the question (equation 4 )
$8 y=40$ (equation $4-$ equation 3 )
$y=5$ and $x=8$
4) a) $x=-1$
b) i) $x-8=5(y-8)$
$x+10=2(y+10)$
ii) $x=38, y=14$
5) a) Angles at centre are $180-2 p$ and similar.

They all add to 360: $720-2(p+q+x+y)=360$, hence result.
b) i) $180-(x+y)$
ii) From a), $\mathrm{BAD}=180-(x+y)$

From b), $\mathrm{BCT}=180-(x+y)$
Therefore BAD $=B C T$
c) From b)ii) XYV = middle angle marked

From b)ii) middle angle marked = right-hand angle marked
So XYV = right-hand angle marked.
By corresponding angles XY and UV are parallel.
6) a) $2 \pi R^{2}$
b) $4 \pi R$
c) $45^{\circ}$
7) a) 120 cm
b) i) $(20-x)^{2}=15^{2}+x^{2}$ $x=\frac{35}{8}$
ii) $C B=A D, D A Q=P A B$ (so all angles same) so congruent triangles and $B P=D Q$.
iii) $(20-2 x)^{2}+15^{2}=P Q^{2}$
iv) $\left(\frac{45}{4}\right)^{2}+15^{2}=\left(\frac{75}{4}\right)^{2}$
$45^{2}+225 \times 16=75^{2}$, which works
8) a) 81
b) i) $1200=2^{4} \times 3 \times 5^{2}$ and $2880=2^{6} \times 3^{2} \times 5$
ii) 250
9) a) i) Perimeter $=2 x+2 y$

Diagonal $=\sqrt{x^{2}+y^{2}}$
ii) $20=2(x+y)$ so $10=x+y$
$8=\sqrt{x^{2}+y^{2}}$ so $64=x^{2}+y^{2}$
iii) $18 \mathrm{~cm}^{2}$
b) i) 5 cm
ii) $A D^{2}=A C^{2}+C D^{2}$
$A D=\sqrt{29} \mathrm{~cm}$
c) $a^{2}+b^{2}+c^{2}+2 a b+2 a c+2 b c$
d) The perimeter of a cuboid is the sum of the edges.
$320 \mathrm{~cm}^{2}$
10)a) $A M=C M$, both of which are bases to triangles $A B M$ and $C B M$ respectively.

The height of both those triangles is the same. So the areas are the same.
Similarly $B N=N A$, both of which area bases to triangles CAN and CBN respectively.
The height of both those triangles is the same. So the areas are the same.
b) i) $\mathrm{A} 1+\mathrm{A} 2=\mathrm{A} 3+\mathrm{A} 4$
$A 1+A 3=A 2+A 4$
ii) Subtract the equations above:
$\mathrm{A} 2-\mathrm{A} 3=\mathrm{A} 3-\mathrm{A} 2$
$2 \mathrm{~A} 2=2 \mathrm{~A} 3$
$\mathrm{A} 2=\mathrm{A} 3$
c) $\quad$ Area $\mathrm{AGM}=\mathrm{A} 3(=x)$, Area $\mathrm{AGN}=\mathrm{A} 2(=x)$ so $\mathrm{A} 1=2 x, A 4=2 x$ and area $A B C=6 x$.

So $A 4$ is $1 / 3$ of $A B C$.
d) $\frac{3}{4}$

