

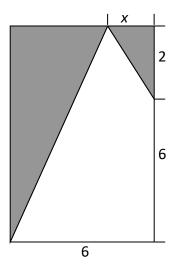
## **Sixth Form Scholarship Examination**

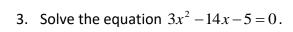
## **Mathematics**

## **Specimen**

| Your | Name    | •••••• | ••••• | <br>• • • • • • • • • • • • • • • • • • • • | ••••• |
|------|---------|--------|-------|---------------------------------------------|-------|
| Your | Current | School |       | <br>• • • • • • • • • • • • • • • • • • • • |       |

Time allowed: 1 hour 30 minutes


## Instructions:


- Calculators are NOT allowed.
- Answer all questions in the spaces provided. Except question 8 which should be done on a sheet of named graph paper and inserted into this booklet at the end
- Any extra sheets should be clearly labeled with your name and the question number and inserted into this booklet at the end
- Show all your working, credit can be given for this
- Marks for each question are given in brackets e.g. [2]

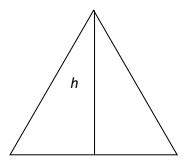
1. Write  $0.0\dot{3}\dot{4}\dot{1}$  as a fraction with integer numerator and denominator.

[2]

2.  $\frac{2}{3}$  of the rectangle below is unshaded. What is the value of x?






a) 
$$x = \frac{pr + v}{r - s}$$

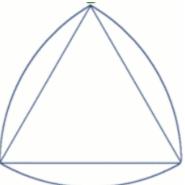
(2) b) 
$$\frac{1}{a} + \frac{1}{b} = \frac{1}{r}$$

[2]

[3]

5. This is an equilateral triangle with side length 2




a) Find, as an exact square root, the height marked h

[1]

b) Calculate the area of the equilateral triangle. Again, give your answer as an exact square root.

[1]

c) 3 circular arcs are drawn from each vertex of the equilateral triangle to form the shape below:



Calculate the area of this shape, leave your answer in terms of  $\boldsymbol{\pi}$  and exact square roots.

6. a) Simplify as far as possible:

$$\frac{x+2}{x^2+5x+6}$$

[2]

- b)
- i. Factorise  $x^2 1$

- [1]
- ii. Hence write the following as a single fraction in its simplest terms

$$\frac{x+3}{x^2 - 1} - \frac{1}{x+1}$$

7. A quadratic graph has the equation  $y = a(x-b)^2 + c$ . It passes through (0,9) and has its vertex at (2,1). Calculate the values a,b and c. Hint: you should start by sketching the curve.

8. On the sheet of graph paper attached, sketch, on the same axes the graphs of :

a) 
$$y = \cos x^{\circ}$$

b) 
$$y = \cos 2x^{\circ}$$

c) 
$$y = 3\cos x^{\circ}$$

[1]

You should label each graph clearly and use a scale of -360° to 360°

- 9. Bag A contains 2 black and 3 red discs. Bag B contains 3 black and 1 red disc. In an experiment, a bag is chosen at random and then a disc is pulled out of the bag, also at random.
  - a. Calculate the probability that the disc is red.

[2]

 Given that the disc is red, find the probability that it came from bag A (Hint, imagine repeating the experiment 1000 times and then consider the distribution of outcomes)

| 10. Prove algebraically that the square of any odd number is always odd. |   |  |  |  |  |  |
|--------------------------------------------------------------------------|---|--|--|--|--|--|
|                                                                          |   |  |  |  |  |  |
|                                                                          |   |  |  |  |  |  |
|                                                                          |   |  |  |  |  |  |
|                                                                          |   |  |  |  |  |  |
|                                                                          |   |  |  |  |  |  |
|                                                                          |   |  |  |  |  |  |
|                                                                          |   |  |  |  |  |  |
|                                                                          |   |  |  |  |  |  |
|                                                                          |   |  |  |  |  |  |
|                                                                          |   |  |  |  |  |  |
| [3]                                                                      | İ |  |  |  |  |  |
| 11. What is the last digit of $3^{2014}$ ? Explain your answer fully.    |   |  |  |  |  |  |
|                                                                          |   |  |  |  |  |  |
|                                                                          |   |  |  |  |  |  |
|                                                                          |   |  |  |  |  |  |
|                                                                          |   |  |  |  |  |  |
|                                                                          |   |  |  |  |  |  |
|                                                                          |   |  |  |  |  |  |
|                                                                          |   |  |  |  |  |  |
|                                                                          |   |  |  |  |  |  |
|                                                                          |   |  |  |  |  |  |
|                                                                          |   |  |  |  |  |  |
|                                                                          |   |  |  |  |  |  |
| [2]                                                                      |   |  |  |  |  |  |
| Total: 40 Marks                                                          | • |  |  |  |  |  |
|                                                                          |   |  |  |  |  |  |
|                                                                          |   |  |  |  |  |  |