Eton King's Scholarship 2012 Maths A solutions

1) a) i)
$$\frac{7}{9}$$

ii) $-1\frac{37}{60}$
b) i) $x < 30$
ii) $x > 2$
c) Yes: 55,55,70 and 65,65,50
d) i) £6
ii) £98.79
e) 0.6cm
f) i) $-13\frac{2}{3}$
ii) $x = -11$
g) 107°
h) $x=3, y=-1$
i) i) $27a^3b^{12}$
ii) $\frac{1}{4}$
j) i) $\sqrt{1125} = 15\sqrt{5} \approx 33.5m^2$
ii) $35.4m^2$
k) i) $\frac{5}{16}$
ii) $\frac{2b}{3a}$
l) i) £26,080,000
ii) £12,990

- iii) 250
- 2) a) Join the centres of the circles to make a square side length $2\sqrt{2}$. This has diagonal length 4 by Pythagoras. So the diameter = $4 + 2\sqrt{2}$. So the radius is $2 + \sqrt{2}$
 - b) Large circle area = $\pi (2 + \sqrt{2})^2 = \pi (6 + 4\sqrt{2})$ 4 x small circle area = $4 \times 2\pi = 8\pi$ Difference = $\pi (4\sqrt{2} - 2) = 2\pi (\sqrt{2} - 1)$
 - Difference = $\pi(4\sqrt{2}-2) = 2\pi(\sqrt{2}-1)$ c) Circumference of large circle + 4 x (circumference of small circle) = $2\pi(2 + \sqrt{2}) + 4 \times 2\pi \times \sqrt{2}$ = $4\pi + 2\sqrt{2}\pi + 8\sqrt{2}\pi$ $4\pi + 10\sqrt{2}\pi$
- 3) a) 1,45,3,15,5,9
 - b) All the factors of 45 are odd, so the sum of any two of them is even
 - c) The numbers are either 1,32 (sum 33) or 2,16 (sum 18) or 4,8 (sum 12). The only odd sum is 33.
 - d) The numbers are either 1,81 (sum 82) or 3,27 (sum 30) or 9,9 (sum 18).
 - e) 4 and 354,294
- 4) a) i) 1.8cm
 - ii) 8cm

b) Easy expansion

c)
$$PQ=(c-x)^2$$

QS=
$$\sqrt{a^2 - (c - x)^2}$$

 $x = \sqrt{b^2 - (a^2 - (c - x)^2)}$
 $x = \sqrt{b^2 - a^2 + c^2 - 2cx + x^2}$
 $x^2 = b^2 - a^2 + c^2 - 2cx + x^2$
 $x = \frac{b^2 + c^2 - a^2}{2c}$

- 5) a) 10 letters and 9 addresses so at least one of the addresses must be duplicated
 - b) $\frac{230}{7} = 32\frac{6}{7}$. So there are 32 birthdays on each day then there are still Etonians left over. So there must be at least one day with more than 32 Etonians having a birthday on that day.
 - c) The minimal situation is 1+2+3+4+5+6+7+8=36. So it is not possible.
 - d) Divide the rectangle into 3x3cm squares. At best, the first 8 points are in different squares. The remaining point must now share a square with another point. The maximum distance between them will be $3\sqrt{2}$.
- 6) a) Easy expansion and rearrange.
 - b) 10,13,23,29,35 has mean 22. 10+35-22=23.
 So the set becomes 13,22,23,23,29 after one application. This has mean 22 and 13+29-22=20.
 So the set becomes 20,22,22,23,23
 - c) Applying again: the mean is 22 and 20+23-22=21 so the set becomes 21,22,22,22,23.
 Applying again: the mean is 22 and 21+23-22=22 so the set becomes 22,22,22,22,22.
 - d) The product of the numbers is only changed because the largest and smallest numbers (x and y) changed to A and x+y-A. Now x<=A and y>=A so (x-A)(y-A)<=0, so xy<=A(x+y-A). Thus the change described results in a product bigger or equal to the original product.
 - e) The R algorithm changes $\{x,y\}$ to $\{A,x+y-A\}$. But the sum of these two pairs is just x+y, so the mean, A, is unchanged.
 - f) By part d), and c) the product 10x13x23x29x35<=22⁵